The generator matrix 1 0 0 1 1 2X+3 1 1 1 1 1 1 0 1 1 1 1 2X 1 2X 1 X+3 1 X+6 1 1 2X+3 1 1 3 1 1 1 1 1 1 1 2X+6 3 1 1 X+6 X+3 0 1 1 1 1 0 1 0 2X+3 0 1 2X+1 8 X+1 X+8 1 2X+2 1 X+3 X+4 X+1 8 1 2X+2 1 X 6 2X+4 1 2X+5 2X+3 1 2X+4 1 1 X+6 2X+8 2X+2 X+8 2X+6 8 X+5 1 1 2X+7 X+3 1 1 1 2X+4 6 6 X 0 0 1 2X+4 8 2X+4 X+8 2X 0 X+8 1 2X+7 8 3 X+6 2X+5 X+7 2X+5 X+5 2X X+2 1 X+4 X+7 6 2X+7 2X+3 4 6 X+4 2X+2 2X+6 2 2X+5 7 X+3 X+7 X+8 2X+1 2X+6 2X+3 X+8 6 2X+7 2 X+2 7 X+2 0 0 0 3 6 0 6 0 6 0 3 3 3 3 3 0 6 0 6 6 0 6 6 6 3 6 3 0 0 3 0 6 0 3 6 0 0 6 6 3 0 3 6 0 3 0 3 3 generates a code of length 48 over Z9[X]/(X^2+3,3X) who´s minimum homogenous weight is 88. Homogenous weight enumerator: w(x)=1x^0+306x^88+474x^89+2020x^90+3012x^91+3090x^92+5166x^93+5856x^94+4584x^95+7806x^96+7344x^97+4974x^98+6060x^99+4164x^100+1788x^101+1482x^102+624x^103+132x^104+46x^105+54x^106+6x^107+16x^108+24x^109+18x^110+2x^114 The gray image is a code over GF(3) with n=432, k=10 and d=264. This code was found by Heurico 1.16 in 5.23 seconds.